Creativity and math may seem completely incompatible. Math is when students follow predefined steps to arrive at an exact answer! Here are four ideas for quick math warmups that encourage students to use divergent, creative thinking.
Tagged WithMath
A Millionaire By Doubling Pennies
How long will it take to get a million dollars if you start with a penny and double it?
Olympic Medal Math Project
In the paper, I read about Norway’s dominance of the Winter Olympics, despite being a tiny country. I love this juxtaposition of unexpected data! Let’s turn it into a math project. Here are some questions I thought of…
Math Project: Shrinking Airline Seats
What kind of math project could you build based on the shrinking dimensions of seats on the Boeing 777?
Goldbach’s Conjecture
Our look at math conjectures continues with Goldbach’s Conjecture, which states that all even integers greater than 2 can be written as the sum of two primes. Is this true for all cases? Another authentic, unsolved question.
The Collatz Conjecture
A “conjecture” is an idea that is believed to be true, but has not yet been proven. They are authentic unanswered questions for students to explore. The Collatz Conjecture uses two simple rules to get from any number to 1. It seems to work for all numbers…
Why Pi?
Pi Day is just around the corner, but the typical fare include π art projects, memorization challenges, or other activities that separate π from its real uses. But π is such a fascinating topic that it should inspire curiosity and wonder on its own.
Big Gifts, Small Prices
What if you want to buy a big gift that’s cheap for its size? By calculating the volume of the object, we can find how much each cubic inch costs. Measured by price per volume, Thomas is 250 times more expensive than a big outdoor slide!
Mathematical Curiosities
Sometimes you encounter that math student who is simply interested in numbers. Here are some famous (and not so famous) sets of numbers that have curious properties.
Finding The Conflict in Math
Sometimes I find authentic data, but it doesn’t necessarily have an obvious conflict. The measurements of the Great Pyramid are cool, but where’s the conflict? What draws students in if they’re not inherently interested in pyramids?